

11 Compiler II: Code Generation

The syntactic component of a grammar must specify, for each sentence, a deep structure that

determines its semantic interpretation.

—Noam Chomsky (b. 1928), mathematical linguist

Most programmers take compilers for granted. But if you’ll stop to think about it

for a moment, the ability to translate a high-level program into binary code is almost

like magic. In this book we demystify this transformation by writing a compiler for

Jack—a simple yet modern object-based language. As with Java and C#, the overall

Jack compiler is based on two tiers: a virtual machine back-end, developed in chap-

ters 7–8, and a typical front-end module, designed to bridge the gap between the

high-level language and the VM language. The compiler’s front-end module consists

of a syntax analyzer, developed in chapter 10, and a code generator—the subject of

this chapter.

Although the compiler’s front-end comprises two conceptual modules, they are

usually combined into a single program, as we will do here. Specifically, in chapter

10 we built a syntax analyzer capable of ‘‘understanding’’—parsing—source Jack

programs. In this chapter we extend the analyzer into a full-scale compiler that con-

verts each ‘‘understood’’ high-level construct into an equivalent series of VM opera-

tions. This approach follows the modular analysis-synthesis paradigm underlying

the construction of most compilers.

Modern high-level programming languages are rich and powerful. They allow

defining and using elaborate abstractions such as objects and functions, implement-

ing algorithms using elegant flow of control statements, and building data structures

of unlimited complexity. In contrast, the target platforms on which these programs

eventually run are spartan and minimal. Typically, they offer nothing more than a

vector of registers for storage and a primitive instruction set for processing. Thus, the

translation of programs from high-level to low-level is an interesting brain teaser.

If the target platform is a virtual machine, life is somewhat easier, but still the gap

between the expressiveness of a high-level language and that of a virtual machine is

wide and challenging.

The chapter begins with a Background section covering the minimal set of topics

necessary for completing the compiler’s development: managing a symbol table;

representing and generating code for variables, objects, and arrays; and translating

control flow commands into low-level instructions. The Specification section defines

how to map the semantics of Jack programs on the VM platform and language, and

the Implementation section proposes an API for a code generation module that per-

forms this transformation. The chapter ends with the usual Project section, providing

step-by-step guidelines and test programs for completing the compiler’s construction.

So what’s in it for you? Typically, students who don’t take a formal compilation

course don’t have an opportunity to develop a full-scale compiler. Thus readers who

follow our instructions and build the Jack compiler from scratch will gain an impor-

tant lesson for a relatively small effort (of course, their knowledge of compilation

theory will remain limited unless they take a course on the subject). Further, some

of the tricks and techniques used in the code generation part of the compiler are

rather clever. Seeing these tricks in action leads one to marvel, once again, at how

human ingenuity can dress up a primitive switching machine to look like something

approaching magic.

11.1 Background

A program is essentially a series of operations that manipulate data. Thus, the com-

pilation of high-level programs into a low-level language focuses on two main issues:

data translation and command translation.

The overall compilation task entails translation all the way to binary code.

However, since we are focusing on a two-tier compiler architecture, we assume

throughout this chapter that the compiler generates VM code. Therefore, we do not

touch low-level issues that have already been dealt with at the Virtual Machine level

(chapters 7 and 8).

11.1.1 Data Translation

Programs manipulate many types of variables, including simple types like integers

and booleans and complex types like arrays and objects. Another dimension of

224 Chapter 11

interest is the variables’ kind of life cycle and scope—namely, whether it is local,

global, an argument, an object field, and so forth.

For each variable encountered in the program, the compiler must map the variable

on an equivalent representation suitable to accommodate its type in the target plat-

form. In addition, the compiler must manage the variable’s life cycle and scope, as

implied by its kind. This section describes how compilers handle these tasks, begin-

ning with the notion of a symbol table.

Symbol Table High-level programs introduce and manipulate many identifiers.

Whenever the compiler encounters an identifier, say xxx, it needs to know what xxx

stands for. Is it a variable name, a class name, or a function name? If it’s a variable,

is xxx a field of an object, or an argument of a function? What type of variable is

it—an integer, a boolean, a char, or perhaps some class type? The compiler must re-

solve these questions before it can represent xxx’s semantics in the target language.

Further, all these questions must be answered (for code generation) each time xxx is

encountered in the source code.

Clearly, there is a need to keep track of all the identifiers introduced by the

program, and, for each one, to record what the identifier stands for in the source

program and on which construct it is mapped in the target language. Most com-

pilers maintain this information using a symbol table abstraction. Whenever a new

identifier is encountered in the source code for the first time (e.g., in a variable dec-

laration), the compiler adds its description to the table. Whenever an identifier is

encountered elsewhere in the code, the compiler looks it up in the symbol table and

gets all the necessary information about it. Here is a typical example:

Symbol table (of some hypothetical subroutine)

Name Type Kind #

nAccounts int static 0

id int field 0

name String field 1

balance int field 2

sum int argument 0

status boolean local 0

The symbol table is the ‘‘Rosetta stone’’ that the compiler uses when translating

high-level code involving identifiers. For example, consider the statement balance=

225 Compiler II: Code Generation

balance+sum. Using the symbol table, the compiler can translate this statement into

code reflecting the facts that balance is field number 2 of the current object, while

sum is argument number 0 of the running subroutine. Other details of this translation

will depend on the target language.

The basic symbol table abstraction is complicated slightly due to the fact that most

languages permit different program units to use the same identifiers to represent

completely different things. In order to enable this freedom of expression, each iden-

tifier is implicitly associated with a scope, namely, the region of the program in which

the identifier is recognized. The scopes are typically nested, the convention being that

inner-scoped definitions hide outer ones. For example, if the statement x++ appears

in some C function, the C compiler first checks whether the identifier x is declared

locally in the current function, and if so, generates code that increments the local

variable. Otherwise, the compiler checks whether x is declared globally in the file,

and if so, generates code that increments the global variable. The depth of this scop-

ing convention is potentially unlimited, since some languages permit defining vari-

ables which are local only to the block of code in which they are declared.

Thus, we see that in addition to all the relevant information that must be kept

about each identifier, the symbol table must also record in some way the identifier’s

scope. The classic data structure for this purpose is a list of hash tables, each reflect-

ing a single scope nested within the next one in the list. When the compiler fails to

find the identifier in the table associated with the current scope, it looks it up in the

next table in the list, from inner scopes outward. Thus if x appears undeclared in a

certain code segment (e.g., a method), it may be that x is declared in the code seg-

ment that owns the current segment (e.g., a class), and so on.

Handling Variables One of the basic challenges faced by every compiler is how to

map the various types of variables declared in the source program onto the memory

of the target platform. This is not a trivial task. First, different types of variables

require different sizes of memory chunks, so the mapping is not one-to-one. Second,

different kinds of variables have different life cycles. For example, a single copy of

each static variable should be kept alive during the complete duration of the pro-

gram’s run-time. In contrast, each object instance of a class should have a differ-

ent copy of all its instance variables (fields), and, when disposed, the object’s

memory should be recycled. Also, each time a subroutine is being called, new copies

of its local and argument variables must be created—a need that is clearly seen in

recursion.

That’s the bad news. The good news is that we have already handled all these dif-

ficulties. In our two-tier compiler architecture, memory allocation of variables was

226 Chapter 11

delegated to the VM back-end. In particular, the virtual machine that we built in

chapters 7–8 includes built-in mechanisms for accommodating the standard kinds of

variables needed by most high-level languages: static, local, and argument variables,

as well as fields of objects. All the allocation and de-allocation details of these vari-

ables were already handled at the VM level, using the global stack and the virtual

memory segments.

Recall that this functionality was not achieved easily. In fact, we had to work

rather hard to build a VM implementation that maps the global stack and the virtual

memory segments on the ultimate hardware platform. Yet this effort was worth our

while: For any given language L, any L-to-VM compiler is now completely relieved

from low-level memory management. The only thing required from the compiler

is mapping the variables found in the source program on the virtual memory seg-

ments and expressing the high-level commands that manipulate them using VM

commands—a rather simple translation task.

Handling Arrays Arrays are almost always stored as sequences of consecutive

memory locations (multi-dimensional arrays are flattened into one-dimensional

ones). The array name is usually treated as a pointer to the base address of the RAM

block allocated to store the array in memory. In some languages like Pascal, the

entire memory space necessary to represent the array is allocated when the array is

declared. In other languages like Java, the array declaration results in the allocation

of a single pointer only, which, eventually, may point to the array’s base address.

The array proper is created in memory later, if and when the array is actually con-

structed at run-time. This type of dynamic memory allocation is done from the heap,

using the memory management services of the operating system. Typically, the OS

has an alloc(size) function that knows how to find an available memory block

of size size and return its base address to the caller. Thus, when compiling a high-

level statement like bar=new int[10], the compiler generates low-level code that

effects the operation bar=alloc(10). This results in assigning the base-address of

the array’s memory block to bar, which is exactly what we want. Figure 11.1 offers a

snapshot of this practice.

Let us consider how the compiler translates the statement bar[k]=19. Since the

symbol bar points to the array’s base-address, this statement can be also expressed

using the C-language notation *(bar+k)=19, that is, ‘‘store 19 in the memory cell

whose address is bar+k.’’ In order to implement this operation, the target language

must be equipped with some sort of an indirect addressing mechanism. Specifically,

instead of storing a value in some memory location y, we need to be able to store the

value in the memory location whose address is the current contents of y. Different

227 Compiler II: Code Generation

languages have different means to carry out this pointer arithmetic, and figure 11.2

shows two possibilities.

Handling Objects Object instances of a certain class, say Employee, are said to en-

capsulate data items like name and salary, as well as a set of operations (methods)

that manipulate them. The data and the operations are handled quite differently by

the compiler. Let’s start with the data.

The low-level handling of object data is quite similar to that of arrays, storing

the fields of each object instance in consecutive memory locations. In most object-

oriented languages, when a class-type variable is declared, the compiler only allo-

cates a pointer variable. The memory space for the object proper is allocated later, if

and when the object is actually created via a call to a class constructor. Thus, when

compiling a constructor of some class Xxx, the compiler first uses the number and

type of the class fields to determine how many words—say n—are necessary to rep-

resent an object instance of type Xxx on the host RAM. Next, the compiler generates

the code necessary for allocating memory for the newly constructed object, for ex-

ample, this=alloc(n). This operation sets the this pointer to the base address of

Java code

...

void foo (int k) {

int x, y;

int[] bar; // Declare an array

...

// Construct the array

bar = new int[10];

...

bar[k] = 19;

}

...

Main.foo(2); // Call the foo method

...

19

4315
4316
4317

4324

(bar array)

...

...

4318

RAM

...

...

4315

...
0

bar

x
y

2 k

(local 0)
(local 1)
(local 2)

(argument 0)

275
276
277

504

following
compilation:

(The RAM state is shown just after executing

bar[k]=19)

Figure 11.1 Array handling. Since memory allocations are run-time dependent, all the shown
addresses are arbitrary examples.

228 Chapter 11

the memory block that represents the new object, which is exactly what we want.

Figure 11.3 illustrates these operations in a Java context.

Since each object is represented by a pointer variable that contains its base-

address, the data encapsulated by the object can be accessed linearly, using an index

relative to its base. For example, suppose that the Complex class includes the fol-

lowing method:

Public void mult (int c) {

re = re * c;
im = im * c;

}

How should the compiler handle the statement im = im * c? Well, an inspection of

the symbol table will tell the compiler that im is the second field of this object and

that c is the first argument of the mult method. Using this information, the compiler

can translate im = im * c into code effecting the operation *(this + 1) = *(this +

1) times (argument 0). Of course, the generated code will have to accomplish this

operation using the target language.

Suppose now that we wish to apply the mult method to the b object, using a

method call like b.mult(5). How should the compiler handle this method call?

Unlike the fields data (e.g., re and im), of which different copies are kept for each

object instance, only one copy of each method (e.g., mult) is actually kept at the

target code level for all the object instances derived from this class. In order to

make it look as if each object encapsulates its own code, the compiler must force this

single method to always operate on the desired object. The standard compilation

Pseudo VM code Final VM code

// bar[k]=19, or *(bar+k)=19

push bar

push k

add

// Use a pointer to access x[k]

pop addr // addr points to bar[k]

push 19

pop *addr // Set bar[k] to 19

// bar[k]=19, or *(bar+k)=19

push local 2

push argument 0

add

// Use the that segment to access x[k]

pop pointer 1

push constant 19

pop that 0

Figure 11.2 Array processing. The Hack VM code (right) follows the conventions described
in section 7.2.6.

229 Compiler II: Code Generation

trick that accomplishes this abstraction is to pass a reference to the manipulated

object as a hidden argument of the called method, compiling b.mult(5) as if it

were written as mult(b,5). In general then, each object-based method call

foo.bar(v1,v2,...) is translated into the VM code push foo, push v1, push

v2, . . . , call bar. This way, the compiler can force the same method to operate on

any desired object for instance, creating the high-level perception that each object

encapsulates its own code.

However, the compiler’s job is not done yet. Since the language allows different

methods in different classes to have the same name, the compiler must ensure that the

right method is applied to the right object. Further, due to the possibility of method

overriding in a subclass, compilers of object-oriented languages must do this deter-

Java code

class Complex {

// Properties (fields):

int re; // Real part

int im; // Imaginary part

...

/** Constructs a new Complex object. */

public Complex(int aRe, int aIm) {

re = aRe;

im = aIm;

}

...

}

// The following code can be in any class:

public void bla() {

Complex a, b, c;

...

a = new Complex(5,17);

b = new Complex(12,192);

...

c = a; // Only the reference is copied

...

}

326
327
328

5
17

6712
6713

...

...

12
192

7002
7003

...

following
compilation:

RAM

...
0

c
b
a (local 0)

(local 1)
(local 2)

6712
7002
6712

a object

b object

Figure 11.3 Objects handling. Since memory allocations are run-time dependent, all the
shown addresses are arbitrary examples.

230 Chapter 11

mination at run-time. When run-time typing is out of the picture, for example, in

languages like Jack, this determination can be done at compile-time. Specifically, in

each method call like x.m(y), the compiler must ensure that the called method m()

belongs to the class from which the x object was derived.

11.1.2 Commands Translation

We now describe how high-level commands are translated into the target language.

Since we have already discussed the handling of variables, objects, and arrays, there

are only two more issues to consider: expression evaluation and flow control.

Evaluating Expressions How should we generate code for evaluating high-level

expressions like x+g(2,y,-z)*5? First, we must ‘‘understand’’ the syntactic struc-

ture of the expression, for example, convert it into a parse tree like the one depicted

in figure 11.4. This parsing was already handled by the syntax analyzer described in

chapter 10. Next, as seen in the figure, we can traverse the parse tree and generate

from it the equivalent VM code.

The choice of the code generation algorithm depends on the target language into

which we are translating. For a stack-based target platform, we simply need to print

the tree in postfix notation, also known as Right Polish Notation (RPN). In RPN

Target code:

Source code:

push x

push 2

push y

push z

neg

call g

push 5

call multiply

add

x+g(2,y,-z)*5

+

x *

g 5

2 -y

z

code
generation

syntax
analysis

(chapter 10) (chapter 11)

Figure 11.4 Code generation.

231 Compiler II: Code Generation

syntax, an operation like f ðx; yÞ is expressed as x; y; f (or, in the VM language

syntax, push x, push y, call f). Likewise, an operation like xþ y, which is þðx; yÞ
in prefix notation, is stated as x, y, þ (i.e., push x, push y, add). The strategy for

translating expressions into stack-based VM code is straightforward and is based on

recursive post-order traversal of the underlying parse tree, as follows:

codeWrite(exp):

if exp is a number n then output ‘‘push n’’

if exp is a variable v then output ‘‘push v’’

if exp ¼ (exp1 op exp2) then codeWrite(exp1), codeWrite(exp2),

output ‘‘op’’

if exp ¼ op(exp1) then codeWrite(exp1), output ‘‘op’’

if exp ¼ f (exp1 . . . expN) then codeWrite(exp1), . . . , codeWrite(expN),

output ‘‘call f’’

The reader can verify that when applied to the tree in figure 11.4, this algorithm

generates the stack-machine code shown in the figure.

Translating Flow Control High-level programming languages are equipped with a

variety of control flow structures like if, while, for, switch, and so on. In con-

trast, low-level languages typically offer two basic control primitives: conditional goto

and unconditional goto. Therefore, one of the challenges faced by the compiler writer

is to translate structured code segments into target code utilizing these primitives

only. As shown in figure 11.5, the translation logic is rather simple.

Two features of high-level languages make the compilation of control structures

slightly more challenging than that shown in figure 11.5. First, a program normally

contains multiple instances of if and while statements. The compiler can handle

this multiplicity by generating and using unique label names. Second, control struc-

tures can be nested, for example, if within while within another while and so on.

This complexity can be dealt with easily using a recursive compilation strategy.

11.2 Specification

Usage The Jack compiler accepts a single command line parameter, as follows:

prompt> JackCompiler source

232 Chapter 11

Where source is either a file name of the form Xxx.jack (the extension is mandatory)

or a directory name containing one or more .jack files (in which case there is no

extension). The compiler compiles each Xxx.jack file into a file named Xxx.vm,

created in the same directory in which the source file is located. If source is a direc-

tory name, each .jack file located in it is compiled, creating a corresponding .vm file

in the same directory.

11.2.1 Standard Mapping over the Virtual Machine

The compiler translates each .jack file into a .vm file containing one VM function

for each constructor, function, and method found in the .jack file (see figure 7.8). In

doing so, every Jack-to-VM compiler must follow the following code generation

conventions.

File and Function Naming Each .jack class file is compiled into a separate .vm file.

The Jack subroutines (functions, methods, and constructors) are compiled into VM

functions as follows:

Source code Generated code

if (cond)

s1

else

s2

...

Compiler

VM code for computing ~(cond)

if-goto L1

VM code for executing s1

goto L2

label L1

VM code for executing s2

label L2

...

while (cond)

s1

...
Compiler

label L1

VM code for computing ~(cond)

if-goto L2

VM code for executing s1

goto L1

label L2

...

Figure 11.5 Compilation of control structures.

233 Compiler II: Code Generation

m A Jack subroutine xxx() in a Jack class Yyy is compiled into a VM function

called Yyy.xxx.

m A Jack function or constructor with k arguments is compiled into a VM function

that operates on k arguments.

m A Jack method with k arguments is compiled into a VM function that operates on

k þ 1 arguments. The first argument (argument number 0) always refers to the this

object.

Memory Allocation and Access

m The local variables of a Jack subroutine are allocated to, and accessed via, the

virtual local segment.

m The argument variables of a Jack subroutine are allocated to, and accessed via,

the virtual argument segment.

m The static variables of a .jack class file are allocated to, and accessed via, the

virtual static segment of the corresponding .vm file.

m Within a VM function corresponding to a Jack method or a Jack constructor,

access to the fields of the this object is obtained by first pointing the virtual this

segment to the current object (using pointer 0) and then accessing individual fields

via this index references, where index is an non-negative integer.

m Within a VM function, access to array entries is obtained by first pointing the

virtual that segment (using pointer 1) to the address of the desired array entry and

then accessing the array entry via that 0 references.

Subroutine Calling

m Before calling a VM function, the caller (itself a VM function) must push the

function’s arguments onto the stack. If the called VM function corresponds to a Jack

method, the first pushed argument must be a reference to the object on which the

method is supposed to operate.

m When compiling a Jack method into a VM function, the compiler must insert

VM code that sets the base of the this segment properly. Similarly, when compil-

ing a Jack constructor, the compiler must insert VM code that allocates a memory

block for the new object and then sets the base of the this segment to point at its

base.

234 Chapter 11

Returning from Void Methods and Functions High-level void subroutines don’t

return values. This abstraction is handled as follows:

m VM functions corresponding to void Jack methods and functions must return the

constant 0 as their return value.

m When translating a do sub statement where sub is a void method or function, the

caller of the corresponding VM function must pop (and ignore) the returned value

(which is always the constant 0).

Constants

m null and false are mapped to the constant 0. True is mapped to the constant

�1 (this constant can be obtained via push constant 1 followed by neg).

Use of Operating System Services The basic Jack OS is implemented as a set of

VM files named Math.vm, Array.vm, Output.vm, Screen.vm, Keyboard.vm,

Memory.vm, and Sys.vm (the API of these compiled class files was given in chapter

9). All these files must reside alongside the VM files generated by the compiler.

This way, any VM function can call any OS VM function for its effect. In partic-

ular, when needed, the compiler should generate code that uses the following OS

functions:

m Multiplication and division are handled using the OS functions Math.

multiply() and Math.divide().

m String constants are created using the OS constructor String.new(length).

String assignments like x="cc...c" are handled using a series of calls to the OS

routine String.appendChar(nextChar).

m Constructors allocate space for new objects using the OS function

Memory.alloc(size).

11.2.2 Compilation Example

Compiling a Jack program (one or more .jack class files) involves two main tasks:

parsing the code using the compilation engine developed in the previous chapter, and

generating code according to the guidelines and specifications given above. Figure

11.6 gives a ‘‘live example’’ of many of the code generation issues mentioned in this

chapter.

235 Compiler II: Code Generation

High-level code (BankAccount.jack class file)

/* Some common sense was sacrificed in this banking example in order to

create a nontrivial and easy-to-follow compilation example. */

class BankAccount {

// Class variables

static int nAccounts;

static int bankCommission; // As a percentage, e.g., 10 for 10 percent

// account properties

field int id;

field String owner;

field int balance;

method int commission(int x) { /* Code omitted */ }

method void transfer(int sum, BankAccount from, Date when) {

var int i, j; // Some local variables

var Date due; // Date is a user-defined type

let balance = (balance + sum) - commission(sum * 5);

// More code ...

return;

}

// More methods ...

}

Class-scope symbol table

Name Type Kind #

nAccounts int static 0

bankCommission int static 1

id int field 0

owner String field 1

balance int field 2

Method-scope (transfer) symbol table

Name Type Kind #

this BankAccount argument 0

sum int argument 1

from BankAccount argument 2

when Date argument 3

i int var 0

j int var 1

due Date var 2

Figure 11.6 Code generation example focusing on the translation of the statement
let balance = (balance + sum) - commission(sum * 5).

236 Chapter 11

11.3 Implementation

We now turn to propose a software architecture for the overall compiler. This archi-

tecture builds upon the syntax analyzer described in chapter 10. In fact, the current

architecture is based on gradually evolving the syntax analyzer into a full-scale

compiler. The overall compiler can thus be constructed using five modules:

m JackCompiler: top-level driver that sets up and invokes the other modules;

m JackTokenizer: tokenizer;

m SymbolTable: symbol table;

m VMWriter: output module for generating VM code;

m CompilationEngine: recursive top-down compilation engine.

Pseudo VM code Final VM code

function BankAccount.commission

// Code omitted

function BankAccount.transfer

// Code for setting "this" to point

// to the passed object (omitted)

push balance

push sum

add

push this

push sum

push 5

call multiply

call commission

sub

pop balance

// More code ...

push 0

return

function BankAccount.commission 0

// Code omitted

function BankAccount.transfer 3

push argument 0

pop pointer 0

push this 2

push argument 1

add

push argument 0

push argument 1

push constant 5

call Math.multiply 2

call BankAccount.commission 2

sub

pop this 2

// More code ...

push 0

return

Figure 11.6 (continued)

237 Compiler II: Code Generation

11.3.1 The JackCompiler Module

The compiler operates on a given source, where source is either a file name of the

form Xxx.jack or a directory name containing one or more such files. For each

Xxx.jack input file, the compiler creates a JackTokenizer and an output Xxx.vm file.

Next, the compiler uses the CompilationEngine, SymbolTable, and VMWriter mod-

ules to write the output file.

11.3.2 The JackTokenizer Module

The tokenizer API was given in section 10.3.2.

11.3.3 The SymbolTable Module

This module provides services for creating and using a symbol table. Recall that each

symbol has a scope from which it is visible in the source code. The symbol table

implements this abstraction by giving each symbol a running number (index) within

the scope. The index starts at 0, increments by 1 each time an identifier is added to

the table, and resets to 0 when starting a new scope. The following kinds of identi-

fiers may appear in the symbol table:

Static: Scope: class.

Field: Scope: class.

Argument: Scope: subroutine (method/function/constructor).

Var: Scope: subroutine (method/function/constructor).

When compiling error-free Jack code, any identifier not found in the symbol table

may be assumed to be a subroutine name or a class name. Since the Jack language

syntax rules suffice for distinguishing between these two possibilities, and since no

‘‘linking’’ needs to be done by the compiler, there is no need to keep these identifiers

in the symbol table.

238 Chapter 11

SymbolTable: Provides a symbol table abstraction. The symbol table associates the

identifier names found in the program with identifier properties needed for com-

pilation: type, kind, and running index. The symbol table for Jack programs has

two nested scopes (class/subroutine).

Routine Arguments Returns Function

Constructor — — Creates a new empty symbol

table.

startSubroutine — — Starts a new subroutine scope

(i.e., resets the subroutine’s

symbol table).

Define name (String)

type (String)

kind (STATIC,

FIELD, ARG,

or VAR)

— Defines a new identifier of a

given name, type, and kind

and assigns it a running index.

STATIC and FIELD identifiers

have a class scope, while ARG

and VAR identifiers have a

subroutine scope.

VarCount kind (STATIC,

FIELD, ARG,

or VAR)

int Returns the number of

variables of the given kind

already defined in the current

scope.

KindOf name (String) (STATIC,

FIELD,

ARG, VAR,

NONE)

Returns the kind of the named

identifier in the current scope.

If the identifier is unknown in

the current scope, returns

NONE.

TypeOf name (String) String Returns the type of the named

identifier in the current scope.

IndexOf name (String) int Returns the index assigned to

the named identifier.

Implementation Tip The symbol table abstraction and API can be implemented

using two separate hash tables: one for the class scope and another one for the sub-

routine scope. When a new subroutine is started, the subroutine scope table can be

cleared.

239 Compiler II: Code Generation

11.3.4 The VMWriter Module

VMWriter: Emits VM commands into a file, using the VM command syntax.

Routine Arguments Returns Function

Constructor Output file/stream — Creates a new file and prepares

it for writing.

writePush Segment (CONST,

ARG, LOCAL,

STATIC, THIS,

THAT, POINTER,

TEMP)

Index (int)

— Writes a VM push command.

writePop Segment (CONST,

ARG, LOCAL,

STATIC, THIS,

THAT, POINTER,

TEMP)

Index (int)

— Writes a VM pop command.

WriteArithmetic command (ADD,

SUB, NEG, EQ, GT,

LT, AND, OR, NOT)

— Writes a VM arithmetic

command.

WriteLabel label (String) — Writes a VM label command.

WriteGoto label (String) — Writes a VM goto command.

WriteIf label (String) Writes a VM If-goto

command.

writeCall name (String)

nArgs (int)

— Writes a VM call command.

writeFunction name (String)

nLocals (int)

— Writes a VM function

command.

writeReturn — — Writes a VM return

command.

close — — Closes the output file.

240 Chapter 11

11.3.5 The CompilationEngine Module

This class does the compilation itself. It reads its input from a JackTokenizer and

writes its output into a VMWriter. It is organized as a series of compilexxx() rou-

tines, where xxx is a syntactic element of the Jack language. The contract between

these routines is that each compilexxx() routine should read the syntactic construct

xxx from the input, advance() the tokenizer exactly beyond xxx, and emit to the

output VM code effecting the semantics of xxx. Thus compilexxx() may only be

called if indeed xxx is the next syntactic element of the input. If xxx is a part of an

expression and thus has a value, the emitted code should compute this value and

leave it at the top of the VM stack.

The API of this module is identical to that of the syntax analyzer’s compilation-

Engine module from chapter 10, and thus we suggest gradually morphing the syntax

analyzer into a full compiler. Section 11.5 provides step-by-step instructions and test

programs for this construction.

11.4 Perspective

The fact that Jack is a relatively simple language permitted us to sidestep several

thorny compilation issues. For example, while Jack looks like a typed language, this

is hardly the case. All of Jack’s data types are 16-bits long, and the language seman-

tics allows Jack compilers to ignore almost all type information. As a result, when

compiling and evaluating expressions, Jack compilers need not determine their types

(with the single exception that compiling a method call x.m() requires determining

the class type of x). Likewise, array entries in Jack are not typed. In contrast, most

programming languages feature rich type systems that have significant implications

on their compilers: Different amounts of memory must be allocated for different

types of variables; conversion from one type into another requires specific language

operations; the compilation of a simple expression like x+y depends strongly on the

types of x and y; and so on.

Another significant simplification is that the Jack language does not support

inheritance. This implies that all method calls can be handled statically, at compile-

time. In contrast, compilers of languages with inheritance must treat methods as vir-

tual, and determine their locations according to the run-time type of the underlying

object. For example, consider the method call x.m(). If the language supports in-

heritance, x can be derived from more than one class, and we cannot know which

241 Compiler II: Code Generation

until run-time. Thus, if the definition of the method m is not found in the class from

which x was derived, it may still be found in a class that supersedes it, and so on.

Another common feature of object-oriented languages not supported by Jack is

public class fields. For example, if circ is an object of type Circle with a property

radius, one cannot write statements like r=circ.radius. Instead, the programmer

must equip the Circle class with accessor methods, allowing only statements like

r=circ.getRadius() (which is good programming practice anyway).

The lack of real typing, inheritance, and public class fields allows a truly inde-

pendent compilation of classes. In particular, a Jack class can be compiled without

accessing the code of any other class: The fields of other classes are never referred to

directly, and all linking to methods of other classes is ‘‘late’’ and done just by name.

Many other simplifications of the Jack language are not significant and can be

relaxed with little effort. For example, one may easily extend the language with for

and switch statements. Likewise, one can add the capability to assign constants like

‘c’ to char type variables, which is presently not supported by the language. (To

assign the constant ’c’ to a Jack char variable x, one must first assign "c" to a

String variable, say s, and then use let x=s.charAt(0). Clearly, it would be nicer

to simply say let x=’c’, as in Java).

Finally, as usual, we did not pay any attention to optimization. Consider the high-

level statement c++. A naı̈ve compiler may translate it into the series of low-level VM

operations push c, push 1, add, pop c. Next, the VM implementation will translate

each one of these VM commands into several machine-level instructions, resulting in

a considerable chunk of code. At the same time, an optimized compiler will notice

that we are dealing with nothing more than a simple increment, and translate it into,

say, the two machine instructions @c followed by M=M+1 on the Hack platform. Of

course this is just one example of the finesse expected from industrial-strength com-

pilers. Therefore, time and space efficiency play an important role in the code gener-

ation part of compilers and compilation courses.

11.5 Project

Objective Extend the syntax analyzer built in chapter 10 into a full-scale Jack

compiler. In particular, gradually replace the software modules that generate passive

XML code with software modules that generate executable VM code.

Resources The main tool that you need is the programming language in which you

will implement the compiler. You will also need an executable copy of the Jack

242 Chapter 11

operating system, as explained below. Finally, you will need the supplied VM Emu-

lator, to test the code generated by your compiler on a set of test programs supplied

by us.

Contract Complete the Jack compiler implementation. The output of the compiler

should be VM code designed to run on the virtual machine built in the projects in

chapters 7 and 8. Use your compiler to compile all the Jack programs given here.

Make sure that each translated program executes according to its documentation.

Stage 1: Symbol Table

We suggest that you start by building the compiler’s symbol table module and

using it to extend the syntax analyzer built in Project 10. Presently, whenever an

identifier is encountered in the program, say foo, the syntax analyzer outputs the

XML line <identifier> foo </identifier>. Instead, have your analyzer output

the following information as part of its XML output (using some format of your

choice):

m the identifier category (var, argument, static, field, class, subroutine);

m whether the identifier is presently being defined (e.g., the identifier stands for a

variable declared in a var statement) or used (e.g., the identifier stands for a variable

in an expression);

m whether the identifier represents a variable of one of the four kinds (var, argu-

ment, static, field), and the running index assigned to the identifier by the symbol

table.

You may test your symbol table module and the preceding capability by running

your (extended) syntax analyzer on the test Jack programs supplied in Project 10.

Once the output of your extended syntax analyzer includes this information, it means

that you have developed a complete executable capability to understand the seman-

tics of Jack programs. At this stage you can make the switch to a full-scale compiler

and start generating VM code instead of XML output. This can be done by gradu-

ally morphing the code of the extended syntax analyzer into a full compiler.

Stage 2: Code Generation

We don’t provide specific guidelines on how to develop the code generation features

of the compiler, though the examples spread throughout the chapter are quite instruc-

tive. Instead, we provide a set of six application programs designed to unit-test these

243 Compiler II: Code Generation

features incrementally. We strongly suggest to test your compiler on these programs

in the given order. This way, you will be implicitly guided to build the compiler’s code

generation capabilities in stages, according to the demands of each test program.

The Operating System The Jack OS—the subject of chapter 12—was written in the

Jack language. The source OS code was then translated (by an error-free Jack com-

piler) into a set of VM files, collectively known as the Jack OS. Each time we want to

run an application program on the VM emulator, we must load into the emulator

not only the application’s .vm files, but also all the OS .vm files. This way, when an

application-level VM function calls some OS-level VM function, they will find each

other in the same environment.

Testing Method Normally, when you compile a program and run into some prob-

lems, you conclude that the program is screwed up and proceed to debug it. In this

project the setting is exactly the opposite. All the test programs that we supply are

error-free. Therefore, if their compilation yields any errors, it’s the compiler that

you have to fix, not the test programs. For each test program, we recommend going

through the following routine:

1. Copy all the supplied OS .vm files from tools/OS into the program directory,

together with the supplied .jack file(s) comprising the test program.

2. Compile the program directory using your compiler. This operation should

compile only the .jack files in the directory, which is exactly what we want.

3. If there are any compilation errors, fix your compiler and return to step 2 (note

that all the supplied test programs are error-free).

4. At this point, the program directory should contain one .vm file for each source

.jack file, as well as all the supplied OS .vm files. If this is not the case, fix your

compiler and return to step 2.

5. Execute the translated VM program in the VM Emulator, loading the entire

directory and using the ‘‘no animation’’ mode. Each one of the six test programs

contains specific execution guidelines, as listed here.

6. If the program behaves unexpectedly or some error message is displayed by the

VM emulator, fix your compiler and return to step 2.

Test Programs

We supply six test programs. Each program is designed to gradually unit-test specific

language handling capabilities of your compiler.

244 Chapter 11

Seven This program computes the value of (3*2)+1 and prints the result at the

top left of the screen. To test whether your compiler has translated the program

correctly, run the translated code in the VM emulator and make sure that it displays

7 correctly. Purpose: Tests how your compiler handles a simple program containing

an arithmetic expression with integer constants (without variables), a do statement,

and a return statement.

Decimal-to-Binary Conversion This program converts a 16-bit decimal number into

its binary representation. The program takes a decimal number from RAM[8000],

converts it to binary, and stores the individual bits in RAM[8001..8016] (each

location will contain 0 or 1). Before the conversion starts, the program initializes

RAM[8001..8016] to -1. To test whether your compiler has translated the program

correctly, load the translated code into the VM emulator and go through the fol-

lowing routine:

m Put (interactively) a 16-bit decimal value in RAM[8000].

m Run the program for a few seconds, then stop its execution.

m Check (interactively) that RAM[8001..8016] contain the correct results, and that

none of them contains -1.

Purpose: Tests how your compiler handles all the procedural elements of the Jack

language, namely, expressions (without arrays or method calls), functions, and all

the language statements. The program does not test the handling of methods, con-

structors, arrays, strings, static variables, and field variables.

Square Dance This program is a trivial interactive ‘‘game’’ that enables moving a

black square around the screen using the keyboard’s four arrow keys. While moving,

the size of the square can be increased and decreased by pressing the ‘‘z’’ and ‘‘x’’

keys, respectively. To quit the game, press the ‘‘q’’ key. To test if your compiler

has translated the program correctly, run the translated code in the VM emulator

and make sure that it works according to this description. Purpose: Tests how your

compiler handles the object-oriented constructs of the Jack language: constructors,

methods, fields and expressions that include method calls. It does not test the handling

of static variables.

Average This program computes the average of a user-supplied sequence of inte-

gers. To test if your compiler has translated the program correctly, run the translated

code in the VM emulator and follow the instructions displayed on the screen. Pur-

pose: Tests how your compiler handles arrays and strings.

245 Compiler II: Code Generation

Pong A ball is moving randomly on the screen, bouncing off the screen ‘‘walls.’’

The user can move a small bat horizontally by pressing the keyboard’s left and right

arrow keys. Each time the bat hits the ball, the user scores a point and the bat

shrinks a little, to make the game harder. If the user misses and the ball hits the

bottom horizontal line, the game is over. To test whether your compiler has trans-

lated this program correctly, run the translated code in the VM emulator and play

the game (make sure to score some points, to test the part of the program that dis-

plays the score on the screen). Purpose: Provides a complete test of how your com-

piler handles objects, including the handling of static variables.

Complex Arrays Performs five complex calculations using arrays. For each such

calculation, the program prints on the screen the expected result versus the actual

result (as performed by the compiled program). To test whether your compiler has

translated the program correctly, run the translated code in the VM emulator and

make sure that the actual results are identical to the expected results. Purpose: Tests

how your compiler handles complex array references and expressions.

246 Chapter 11

